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Absh?td. Quantum deformations of the simplest Lie parasuperalgebra Psqm (2) are 
constructed by taking advantage of the well known representations of su,(Z,C). As a 
particular result, we show that the fundamental Witteen superalgebra sqm(’2) cannot be 
deformed. 

1. Introduction 

The simplest ‘quantum group’ suq(2. @), i.e. the q-deformation of the Lie algebra 
corresponding to SU(2. e), has been extensively studied as an important example in 
connection with different fields in theoretical and mathematical physics [I-41. More 
specifically, Macfarlane [3] has exploited the Sklyanin quantum algebras [SI in order 
to generalize the quantum theory of angular momentum and, correlatively, in order to 
develop a q-deformation of the quantum harmonic oscillator formalism. 

The general method which has to be applied to any semisimple Lie algebra or 
superalgebra for constructing its quantum deformation is already known [ Z ] .  It does 
not work in the non-semisimple contexts although some results have been obtained 
through contraction procedures like those discussed for study Poincare deformations 

Physically interesting Lie parasuperalgebras [A appear as such non-semisimple 
structures when their quadratic character is enhanced by searching their connection 
with Sklyanin’s developments [5 ] .  In fact, this happens in parasupersymmetric 
quantum mechanics (PSSQM) [%lo] subtended by the simplest Lie parasuperalgebra 

We propose hereafter to discuss the possible q-deformations of Psqm(2) in 
connection with arbitrary orders p of paraquantization [ l l ,  121 by exploiting the 
original su,(2, @)-representations 141. With new p-dependent general expressions of 
the parasupercharges, we are led to deformed relations characterizing these quantum 
deformations. In Section 2, we relate Lie parasuperalgebras and Sklyanin quadratic 
algebras and we notice that the simplest Lie parasuperalgebra Psqm(2) is nothing else 
but a direct sum of su(2, @) with an abelian (one-dimensional) algebra due to the 
conserved character of the parasupercharges. In Section 3, we construct the two new 
parasupercharges and study the possible deformed structure relations which can be 

t Chercheur, lnstitut Interuniversitaire des Sciences Nucleaires, Bruxelles. 

0305-4470/93/174311 t o 8  $07.50 0 1993 IOP Publishing Ltd 4311 

FI. 

Psqm(z) ~71. 



4312 

obtained for arbitrary orders p of paraquantization by dealing with the matrix 
realization of the deformed representations of su,(2, C). Section 4 is devoted to some 
comments related to the lowest orders p = 1,2,3 and to recent results on ( p  + I)-level 
systems studied by Semenov and Chumakov [15]. 
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2. Parasuperalgebras, quadratic algebras and the s p d c  context of Psqm(2) 

Let us start by dealing with parasupersymmetric developments [8,9] superposing 
bosons and p=2-parafermions where p is the order of paraquantization. More 
precisely, let us consider the context of exacf parasupersymmetry 19,101 as a direct 
generalization of the Witten supersymmetric quantum mechanics [I31 when two odd 
supercharges are involved (as it is necessary for oscillatorlike interactions in particu- 
lar). The corresponding Lie parasuperalgebras [7] are generated by euen operators 
denoted here by X , ( k = l , .  . . ,n) and odd operators denoted here by 
Y,(a= 1, . . . , m), so that the corresponding structure relations are summarized by 

[T, & I =  CZX, [Xiui, YJ=d$Yp (2.1) 
[ y . , [ y , ,  yyll=e$~x,, yJ-e!&, yp}. (2.2) 

The Lie bracket of these parasuperalgebras appears as a double commutator leading 
to frilinear products only well defined in enveloping algebras or in ternary algebras. 

Let us point out here that these structures reduce to quadratic algebras [5] by 
defining the commutators of two odd operators as new even generators denoted 
hereafter by 2 

It is then easy to convince ourselves that Lie parasuperalgebras take quadratic forms. 
In fact, by using the corresponding Jacohi identity, we get the following commutation 
relations besides eqs. (2.1) and (2.3) for the above structures 

[Y,, Y,l=Z,. (2.3) 

[Y., z+l=e',sI-% YJ--e:%, YS} (2.2') 

[X,, Zpyl = d$Zp.,- d$Z, (2.4) 

- zyp) + &{Xi, - e${&, zd .  (2.5) 
[ z ~ ,  z " ~ I = ( e $ d ~ * . - e ~ d ~ ~ ) { Y . ,  YJ+e$X,, &,.I+ (eLd; , -e / ,d;&', , ,  ye} 

Tbese relations taken together with eqs. (2.1) and (2.3) appear in general as 
commutation relations of a quadratic algebra. 

Let us now take the case of the simplest Lie parasuperalgebra called Psqm(2) 171. 
It corresponds to a generalization of the Witten superalgebra sqm(2) 1131. This 
parasuperalgebra is generated by the even (parasuper) Hamiltonian Hpss and the two 
odd (parasuper)charges Q and Q'. We have 

. 

(2.6) 

x1= H P S S  Zzi~[Q'.  Ql=u3 Yl = Q= J -  Y2=Qt-J ,  (2.7) 

[HPSS, Q l = o  [HPSS, Q t l = o  
[Q,  [e', QII=~QHPss [e', [Q, Q'l1=zQtffpss. 

By defining two even operators and two odd ones respectively by 

we immediately get the algebra 

[XI I 511 = 0 1x1, J31=0 (2.8~) 
[J+ 7 J -  I [J,, J.J=+J*XI.  (2.86) 
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In fact, this is not a quadratic algebra (as expected) but the relations (2.8) refer to the 
direct sum su(2, @ ) @ X I ,  nevertheless characterized by the non-commutative co- 
product: 

(2.9) 
A ( J + ) = J + @ X ,  + I @ J +  

A(J~)=J~E'XI+XI€~J~  A(Xl) = X l @ X l .  
A(J-) = J -  €41+Xl€4J_ 

Such a property does not imply that the above structure is a quantum algebra: we have 
recently learned [14] that it is possible to get deformed coproducts without deforming 
the algebra itself. 

In conclusion, the simplest parasuperalgebra Psqm(2) cannot be deformed 
through already known methods. We propose to exploit its connection with su(2, @) 
(through the above direct sum structure) in order to discuss its possible deformations 
for arbitrary orders of paraquantization. 

3. Deformed Psqm,(2) from representations of ~ ~ ( 2 ,  @) 

Due to the main role played by the parafermionic 'variables' in the construction of 
N=Z-PSSQM, we propose now to study the possible deformations of our fundamen- 
tal parasuperalgebra Psqm(2). We want to exploit the explicit representations of 
su& C) inside the construction of the two (new) parasupercharges needed in the 
structure relations (2.6). In fact, after Macfarlane [3] and Biedenharn [4], let us recall 
that, within a basis of q-quantum angular momentum states l j ,  m),, we have for each 
(j=p/2)-iixed value 

(3.la) 

(3.lb) 
J ,  Ij, m),= ( [ j S  mJ[j& m + l])1'2/j, m k l), 

J31i, m), = m1.L m), 
where we choose [3] 

(3.2) 

By referring to the corresponding matrix realizations of the irreducible represen- 
tations DY), we can evidently point out the ( p  + 1)-dimensional diagonal matrix 
( J , )  = mU and the two non-diagonal ones associated with the scaling operators J ,  , i.e. 
respectively 

(3.3a) 

and 
P J-+C ([jllP-j+ 11)"~e,+~.~. (3.3b) 

As usual our notations e,,k correspond to (p + I)-dimensional matrices containing 
zeros everywhere except units at the intersection of the jth row and the kth column. 
Let us notice that the (p= 1)-value (corresponding to the current fermionic context) 

j=1 



4314 

leads through eqs. (3.3) to the meaningful Pauli matrices U* and U- which are the 
fennionic ‘variables‘ introduced in the Witten supercharges [13].  

By taking care of these observations, we now propose general forms of the 
parasupercharges as follows 
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j=l  (3.4) 

where evidently pz = - i (dldr) and the W,(x)’s are the implied barasuper) potentials. 
Such parasupercharges include in their explicit forms the effect of the q-deformations 
issued from the su(2, C) developments. Due to their structures, they evidently satisfy 
(expected) nilpotent relations such that 

Q -  P + l - O ,  ( Q i ) P + ”  0 (3.5) 
and we can ask for deformed relations corresponding to eqs. (2.6) as well as for 
possible associated Hamiltonians where the latter have to be on the diagonal form 
with elements 

H):) = +pz +f;(x). 

Due to the structure relations (2.6) with respect to double commutators, let us 
search for information on the real functions a(q), p(q),  y(q) and 6(q) as well as on the 
hermitian deformed Hamiltonians Hp inside the relations 

4dQQ’Q -B(q)QzQ - y(dQ’Q*= S(q)QH(q) (3.6a) 

~ ~ ~ ~ Q ’ Q Q t - 8 ~ ~ ~ Q Q ” ~ ~ ~ ~ Q t ’ Q ~ ~ ~ ~ ~ Q ’ ~ ‘ ‘ ’  (3.6b) 

when the parasupercharges (3.4) are evidently introduced in these developments. 
Such structure relations immediately imply (as in the nondeformed context) typical 
constraints on the parasuperpotentials: these appear as (p - 1)-Riccati equations 
given by 

and 

w;;l + Wjet = w: - w;+ ci j = 1 , 2 , .  . . ,p-I  (3.7) 
where primes refer to space derivatives as usual and the c’s are arbitrary constants. 
Moreover we get (2p - 2)anstraints on the three functions a(q), P(q) and y(q)  which 
take the forms 

a(q) [p  - 2j+ 21 f B ( q N 2 j - p  - 4 l + ~ ( q ) [ 2 j - ~ l  = O  ( 3 . 8 ~ )  

and 

a ( q ) [ j l [ p - j +  4 ~ i - l - B ( q ) [ j - 2 l [ ~ - j + 3 l ~ j - ~  

j = 2 , 3 , .  . . , p  

+ ~ ( d ( [ 2 j - ~ l c j -  I - [i+ ~ I [ P  -ilcj) = O  j = 2 , 3 , .  . . , p .  (3.8b) 

Such results are easily obtained by using in particular the following identity: 

[n-m+ I ] = [ m ] [ n ]  -[m- I ] [n+  1 1 .  (3.9) 
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The discussion of the systems (3.8) is intimately related to the cancellation or not 
of the bracket [j] for specific values of j (such that j=2,3)  or for arbitrary values of 
j = 2 , .  . , , p +  1. Let us point out, in particular, the specific interest of eq. (3.9) in 
these results. For example, if [2] = 0, it implies [21] = 0 for l= 2,3, . . . so that we have 
only to consider odd p’s in the first class hereafter. In fact, we distinguish four classes 
of results, i.e. 

(i) [2]=0,podd,  a=-(B+y) 

c, = -c2, c,= -c4, . . . , q - 2  = -I+,; 

(ii) [ Z ] # O ,  [3]=0, a=-B=-y. ciarbitraryifp<3 

(3.10) 

or c,+ cj+, + c,+,= 0 if p>3  (except if p=3n + j- 1, ne N); (3.11) 

(ii) [2]#0,[3]#0,[j]=O,j=4, ..., p + l , w h e n p ~ 3  

a = (4’ + q-’)B B=r (3.12) 

the c;s being constrained but at least one of them being non-zero; 

(iv) [il+O j = 2 , .  . . , p + l  

a= (q2+q-’)B p = y ,  c, = ’ ’ . =cp_, =o. (3.13) 

We mention that the case p = 2 is a particular one. Indeed such a context leads to the 
classes (ii) and (iv) where, in the last case, a is left arbitrary. For a uniform treatment, 
we constrain it following eq. (3.13). 

Let us now draw the conclusions on the possible q-deformed Psqm(2) which can be 
obtained from the above discussion in correspondence with these four classes. Besides 
the structure relations, we also give the explicit forms of the corresponding 
Hamiltonians which are characterized by the following (diagonal) elements: 

and 

(3.14~) 

By using the definitions (3.4), the deformed relations (3.6), the constraints (3.7) and 
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the matrix elements (3.14), we get in correspondence with the four above classes that 
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(i') 

(ii') 

Q2=0, [XQl=O, QQtQ=[plQx 

%e, , ,= f (p :+W:+W;)  

Xz , ,= t (p :+  w: - Wl) =f(p l+  w:+ w;-c,) 
..., (3.15) 

if p = l ,  3 , 4  Qz=O, [X, Q]=O, QQtQ= QX 

%e,, =:(P:+ w: + w;+ [21[P - llcd 
. . . ,  (3.16a) 

i f p # l , 3 , 4  

QP" = 0, [%e, Q] = 0, Q2Q'+ Q tQZ + QQ'Q = Q% 

' 1  (3.16b) 

(iii') ifj=rl; QP+l=O, [%e,Q]=O, {Qz,Qt}=-[2][p-l]QX 

%e,,, =+(p:+ w:+ w ;  + CI) 
..., (3.17a) 

if j f 4 :  QP+'=O. [ X ,  Q]= 0 

[Q,[Q'. Q l q l q = ( [ ~ + 2 1 - ~ ~ l ) Q X  
1 

4 
with [A ,B] ,=qAB--BA 

(3.176) 

(3.18) 

By noticing that hermitian conjugate structure relations have to be included and that 
two successive diagonal matrix elements of the Hamiltonian(s) have to be super- 
partners related through the constraints (3.7), we have limited the above results to a 
minimal listing. 

4. Some comments and conclusions 

Let us illustrate the contents of the above results (3.15)-(3.18) by considering the first 
orders p =  1,2 ,3  of paraquantization in connection with recent studies. 
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Ifp = 1 .  the classes (i'), (ii') and (iv') are concerned with and they lead to the same 
. ;. . ,  

structure characterized by 

Qz=O [ H s ,  Q l = o  QQ'Q= QHss= Q{Q', Ql ( 4 4  
where evidently (through the superposition of bosons and fermions) we are dealing 
with supersymmetric considerations and a supersymmetric Hamiltonian HSs [13]. 
From (3.18), we learn that the deformation of sqm(2) is not feasible for any value of q 
in complete agreement with a recent result [16] showing that the Spiridonov approach 
of such a problem [I71 is nothing else than a standard Witten supersymmetric model 
but with a q-dependence inside the superpotentials. 

If p = 2, only the classes (ii') and (iu') are implied in correspondence with [3] = 0 
and [3] #O respectively. We immediately get from (3.16b) that 

~ 3 = o  [U, Ql= 0 QQtQ+ Q2Q'+ Q'Q2==2[2]QH (4.2) 
where 

H=diag(H,,,, H2,2, 4 . 3 )  (4.34 

H2,2=*(p: + W : -  W ;  - gcI)=t(p:+ W:+ W ; - + C ~ )  (4.34 

=$(p:+ W:+ W i  + $cl) (4.36) 

H,,,=$(p:+ W:- W i - i ~ t ) .  (4.3d) 

This parasupersymmetric Hamiltonian coincides with the original one constructed by 
Rubakov and Spiridonov [SI and the above structure is a q-deformation of their 
parasuperalgebra. Let us point out that with H?., and H2,2 with H3,, appear as 
(expected) respective superpartners on the basis of the constraints (3.7). When 
[3]#0, we immediately get, from (3.18), that 

[Q,[Q', Qlql,=([4I-[2l)QH~~s 

IQ, IQ', Qll = PIQHPSS. 
i.e. 

(4.4) 
This context is exactly the one discussed elsewhere [9, IO] Characterized by the 
cancellation of the arbitrary constant ct, leading in particular to the direct exploitation 
of Riccati equations in [18]. 

The above two cases corresponding respectively to [3] = O  and [3] f O  just fall into 
the Semenov-Chumakov discussion [U] of the so-called N ( = p  + 1)-level systems. 
When [3] = 0. the Rubakov-Spiridonov model [SI corresponds to the interaction 
between a bosonic mode and a 3-level system (of the E-type) while, when [3] #0, we 
recover our model of the A- or V-type with W,= - W 2 = x ,  c,=O, for the harmonic 
oscillatorlike context [9, 101. 

If p=3. the four classes have to give q-deformations of Psqm(2). These results 
lead to examples of &level systems of a-type (when [4] =O.  c1= c2=2), 6-type (when 
cI =c2=O) and e-type (when [3]=0. cI = 2 .  c2=O) following the Semenov-Chumakov 
notations. 
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